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Various thermal equilibrium and nonequilibrium phase transitions exist where 
the correlation lengths in different lattice directions diverge with different 
exponents vii, v• uniaxial Lifshitz points, the Kawasaki spin exchange model 
driven by an electric field, etc. An extension of finite-size scaling concepts to 
such anisotropic situations is proposed, including a discussion of (generalized) 
rectangular geometries, with linear dimension Lll in the special direction and 
linear dimensions L .  in all other directions. The related shape effects for 
Ljl ~ L• but isotropic critical points are also discussed. Particular attention is 
paid to the case where the generalized hyperscaling relation vii + ( d - 1 ) v .  = 
7 + 2/3 does not hold. As a test of these ideas, a Monte Carlo simulation study 
for shape effects at isotropic critical point in the two-dimensional Ising model 
is presented, considering subsystems of a 1024 x 1024 square lattice at criticality. 

KEY WORDS: Finite-size scaling; anisotropic systems; Lifshitz points; driven 
Kawasaki model; nonequilibrium phase transitions; Monte Carlo simulations. 

1. I N T R O D U C T I O N  

Fin i te -s ize  effects o n  phase  t r a n s i t i o n s  have  b e e n  g iven a lot  of  a t t e n t i o n  in  

the last  two decades  (1 19) (refs. 7 a n d  16-18 c o n t a i n  recent  reviews of some  

aspects  of this  work ;  see ref. 1 for ear ly  work) .  The  m o s t  c o m m o n l y  s tud ied  
cases are  s e c o n d - o r d e r  phase  t r a n s i t i o n s  where,  close e n o u g h  to the  cri t ical  

t e m p e r a t u r e  To, there  is a s ingle  r e l evan t  length :  this  l eng th  scale is the 
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correlation length ~ of the order parameter fluctuations, which diverges 
according to a power law involving the exponent v, 

oc I T -  T~I v (1.1) 

as one approaches To. The basic statement of finite-size scaling 
theory (2'4'5'7) is that the finite-size rounding and shifting of critical 
singularities are controlled by the ratio between ~ and the linear dimension 
L of the system. Thus, if we consider for the moment a (hyper-) cubic 
geometry L x L x .-- x L in d dimensions, then the order parameter (1~1) 
which in the thermodynamic limit L---} oo vanishes according to a power 
law involving the exponent fl, 

( 1 ~ [ )  oc ( T o -  T) #, T ~ T c  (1.2) 

has, in the finite geometry, a smooth temperature variation described by a 
scaling function ~, 

In a similar way the ordering susceptibility 

lim ~ (Ld/kBr)[(~g:)L-(l~l)~]' T<T~ 
Z~ '=-L~  ( ( L d / k B T ) ( ~ : ) c ,  T>~ T C (1.4) 

which in the thermodynamic limit diverges according to a power law 
involving the critical exponent Y, 

Z~,oc [T-Tc[ ~, T ~ r c  (1.5) 

has its finite-size behavior given by 

Z~',L ~- L~/Vz(L/~) (1.6) 

Equations (1.3) and (1.6) are only valid if the hyperscaling relation 
among the critical exponents is satisfied, namely (2~ 

dv = y + 2fl (1.7) 

If Eq. (1.7) does not hold, the asymptotic critical behavior is not deter- 
minated by a single diverging length, and thus it is clear that the simple 
rule "L scales with ~" expressed in Eqs. (1.3) and (1.6) may need modifica- 
tion. Several cases need to be distinguished: 

(i) For systems above the marginal dimensionality d*, the critical 
exponents take on their mean-field values and then dv > 7 + 2#. In this case 



Finite-Size Effects at Critical Points 89 

Eqs. (1.3) and (1.6) are not valid (6'9 13) and the finite-size behavior near Tc 
is controlled by lengths different from ~(1o-12). 

(ii) For certain anisotropic systems, the decay of the correlation 
functions in different directions may be governed by correlation lengths 
diverging with different exponents. Here we shall mainly consider uniaxial 
systems, with a correlation length ~ii in the direction of this axis, and 
another correlation length 4• in all directions perpendicular to this axis: 

4tj oc IT-Te l -~"  (1.8) 

4• oc I T - T e l - ~  (1.9) 

with vil and v• different from each other. Such a case is encountered for 
uniaxial Lifshitz points, (21-23) for instance. In this case a modified hyper- 
scaling relation holds,(2~) 

vii + ( d -  1)v• = 2: + 2/~ (1.10) 

if the system dimensionality d does not exceed the marginal dimensionality 
d* (d* = 9/2 for the uniaxial Lifshitz pointI21)). A generalization to m-axial 
Lifshitz points (where the correlation length is 411 in m directions and 41 
in d - m  directions) is conceivable but outside of consideration here. 

(iii) The situation described by Eqs. (1.8) and (1.9) is believed also 
to happen for the nonequilibrium phase transition which occurs in the 
Kawasaki spin exchange Ising model (24) driven by an "electric field." In this 
model one associates an electric charge with the particles (represented by 
down spins in the lattice gas interpretation of the Ising model). (2s) Despite 
many computer simulation efforts, (2s 33) the critical behavior of this model 
is far from understood: while some analyses suggest that Eqs. (1.8) and 
(1.9) with vlt r177  are valid for both d = 2  and d =  3, Vall6s and Marro (291 
found v ~0.55-t-0.2 in two dimensions, assuming that there is only one 
exponent vii = v• = v. And a similar result v g 0.7 is also given in ref. 32. On 
the other hand, a field-theoretic version of this model has been studied by 
Janssen and Schmittmann (34) and  by Leung and Cardy, (3s) who obtain in 
an expansion to all orders in e = 5 - d the following critical exponents: 

v t l = l + g ,  v• 2' /~ , 7 = 1  

E ( e -2 ) (3  + e) r/~s= 1 + ~  
t /~s -  6 + e  ' 

(1.11) 

which are believed to be valid for 2 < d < 5. It has not been possible so far 
to carry out a meaningful comparison of Eq. (1.11) with simulation results, 
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since the latter are plagued by finite-size effects which are not fully 
understood. Since for d > 2  the exponents in Eq. (1.11) do not satisfy the 
generalized hyperscaling relation (1.10), rather complicated finite-size 
behavior may be expected. 

In the present paper, we discuss the extension of finite-size scaling con- 
cepts to anisotropic critical phenomena described by Eqs. (1.8) and (1.9), 
and consider both the situation where the generalized hyperscaling relation 
(1.10) is valid and where it is not. In a case with viler• it is rather 
natural to consider the situation where the linear dimension Lll in the axial 
direction differs from the linear dimension L• in the other directions. Of 
course, such a geometry may be of interest also for the simpler situation of 
isotropic critical phenomena where a unique correlation length ~ exists. We 
shall therefore consider such shape effects also in the standard finite-size 
scaling case. Previous work has occasionally considered the rectangular 
geometry Lll • L• in d=  2 (1'8'15'17) and the infinite strip geometry(7'9"12'14); 
anisotropically diverging correlation lengths and their consequence for 
finite-size scaling have been discussed for directed percolation ~36'37) and for 
directed self-avoiding walks ~38) and related models. (39) Whenever possible 
we shall make contact with these earlier works. 

In the next section we describe our phenomenological theory in detail, 
while Section 3 describes Monte Carlo simulations which have been perfor- 
med to test shape effects in the standard two-dimensional Ising model in 
thermal equilibrium. A computer simulation study of the driven Kawasaki 
model will be given in a future publication. Section 4 gives some comments 
on previous work on this problem and summarizes our conclusions. 

2. P H E N O M E N O L O G I C A L  FINITE-SIZE SCALING THEORY 

2.1. Prelude 

This section, which is necessarily somewhat speculative, contains our 
main ideas and makes many new predictions. For the sake of clarity, we 
have divided it into many subsections, considering the straightforward 
cases first, and the more complicated situations later. Thus, the next three 
subsections will be devoted to cases where hyperscaling or generalized 
hyperscaling still holds, while the simultaneous problem of hyperscaling 
violation and anisotropy is treated in the last subsections. For the sake of 
coherency of the presentation, we shall summarize the main points of finite- 
size scaling for isotropic critical phenomena without hyperscaling in Sec- 
tion 2.5. This approach, first derived in refs. 10-12, is then generalized to 
anisotropic equilibrium phase transitions, namely Lifshitz points for 
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d > d * ,  in Section 2.7. The extension to the nonequilibrium driven 
Kawasaki models is attempted in Section 2.9. 

2.2. Shape  Ef fects  on F in i te -S ize  Scal ing in the  
T w o - D i m e n s i o n a l  Ising M o d e l  

In this subsection we treat finite systems in rectangular geometry 
L N x L• We start by considering the correlation function between the local 
order parameter 7S(x, y) at a point described by its Cartesian coordinates 
x, y and the origin, (g~(0, 0) gS(x, y ) ) r .  The finite-size scaling hypothesis 
states for the behavior of this correlation function near Tc 

(gt(O'O) gg(x 'Y))r~-(x2+Y2)-"/2f  ~ '~ '  LII' L-• (2.1) 

where r/ is the critical exponent describing the decay of correlations right 
at T C in the infinite system. (2~ Since we are particularly interested in the 
behavior at Tc where ~ is infinite, we note that Eq. (2.1) then can be 
reduced to 

Equation (2.2) results from Eq. (2.1) by defining f'(zlz4, Z2Z4, 
z31z4, z4) = f(z l ,  z2, z3, z4) and setting 

( X  , Z , l X ~  lira frQ~&Y tl, z4 ) (2.3) 
F L• L• L• z4~ ~ ' L• t •  

We first consider the case where the system with linear dimensions 
Lll, L• is a subsystem of an infinite system, and wish to obtain the suscep- 
tibility by summing over all the correlations. Then the function F is inde- 
pendent of L~, L l ,  of course; the "susceptibility" 

1 LII L• LII L• 
- ~ Z Z Z (Tt(x,, Y,) ~(x:,  Y2))r (2.4) 

kBTz LI IL lx  =1 yl=l xz=l y2=1 

becomes, if we replace sums by integrals and choose the lattice spacing as 
unity, 

2 f f~'• L• 
LII dxl dy~ dx dy ( ~(O, O) ~(x, y) ) r  

kBTZ~LIIL• ~o ~o ~o 

(2.5) 
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Using now (~u(0, 0) 7J(x, Y))rc oc (x2+ y2)-./2, this becomes 

fo �9 i? 2 rLlldXl dy 1 ~Lll-Xldx dy(x2~_ y2)--r//2 kB T~z(T~) oc ~ ~o ~o 

= 2(LiiL• f] dX'l f] dy', 

1 \ -- ~1/2 
dx' o dY'\L• - -  x fo xl [l-y; (Lii + L •  (2.6) 

where in the last step an obvious rescaling of all integration variables has 
been performed, and the scaling relation y/v = 2 - t / i s  used. It is seen that 
Eq. (2.6) has the form predicted by conformal invariance, (iv) 

kB T~( T~) ~- ( Lil L • )~/2v ~( Lll/ L • ) (2.7) 

and the scaling function )7 has the symmetry ~(LiJL•177 since 
the integration variables in Eq. (2.6) may be relabeled. 

In the case where Lll >> L• it is straightforward to calculate ~(Lli/L• 
explicitly, since then the term (L• y,2 is negligible in comparison with 
(LIJL• '2 in the integrand. We obtain 

z(T~) cc (LIIL• ,/2 (LII/L• r~/~ 1 ~l~l l  (2.8) 

Next we discuss an estimate for the magnetization ( [ gt[ ) 2- We argue 
that (I ~[ ) rc is of the same order as the root mean square magnetization 

=[kBT~Z(Tc)] 1/2 (2.9) 
L LllL• ] 

and hence 

( l ~ l ) r e  oc (LllL• ~(Lil/Li) (2.10) 

where we have used the hyperscaling relation (1.7) with d=2 ,  and the 
scaling function ~' behaves similar to [~(LII/L• 1/2. For LIH/L l of order 
unity, both )~ and ~ should also be of order unity. However, for Lll >> L• 
we should have 

( l~l  >r~ oc (LIIL• fl/2v (LII/L• rt/4=Ll~,a/v (2.11) 

A further quantity of interest is the reduced fourth-order cumulant, 

1 ( < i/,4 > .'~ 
g = ~  3. (2.12) 
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which at T C is expected to scale as 

g(Tc) "'" ~(LJL• (2.13) 

A discussion of four-spin correlation functions at Tc is required to deter- 
mine the asymptotic behavior of the scaling function ~,(LtJL• for large (or 
small) LjJL• but this problem is outside of our considerations here. Again 
the symmetry ~,(LJL• ~,(L• ) must hold. 

Next we consider a finite system with linear dimensions Lll, L• and 
periodic boundary conditions. Due to the full translational invariance of 
this problem, we have instead of Eq. (2.4), 

LII LL 
kBT)~= ~ ~ (~(1,  1) ~(x, Y))r (2.14) 

x = l  y = l  

In the continuum limit Eq. (2.5) gets replaced by 

kuTz~ f~ttdx lo• (~(O, O) ~(x, y)>r,L,,.L• (2.15) 

Using now Eq. (2.2), we find at Tc 

kBTz(Tc)~Jo dx dy(x2+ y2)-"/2F 

where now a nontrivial function F appears. 
variables in Eq. (2.16) as in Eq. (2.6) yields 

kB Tcz( Tc) "~ ( Lli L • )y/2~ fs dx' 

1 dy' (LIIx,2+L• y, 2) rl/2 f X 
Jo \L  j_ Lll 

and hence 

(2.16) 

Rescaling the integration 

F (  Lli ' LII'] (2.17) 
\L• x,  y', L• 

k~ Tcg(Tc) ~- (Lll L• ~/2v ~(LJL• (2.18) 

(2.18) has the same form as Eq. (2.7), the asymptotic 

(2.19) 
/ /X 2 y2 "~,7/2 x 

= ~,~-Tl + ~--~S) exp (-- ~--7~ ) 

Although Eq. 
behavior for Lil >> L• clearly is different. As is well known, (s) for Lll ~> L• 
the correlation function decays exponentially fast in the x direction: 

F(LII x', y ', oc x '2 \L• L• -~i y,2) e x p \  L i /  
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Actually in the decay constant there may be an amplitude factor, which for 
simplicity is suppressed here, as prefactors anyway are disregarded 
throughout. This equation expresses the fact that for Ltl >> L• in the fully 
finite system the correlation length at Tc is limited by L~,  and this length 
L a governs the decay of correlations in the direction along the strip. Equa- 
tion (2.17) then yields, putting x ' =  x'LN/L • 

k"T~177 Io dx"Io dY'\LjI j e x p ( - x " )  

oc .,2 
\ L t t /  = L  2-" (2.20) 

where we have replaced the upper limit LIt/L ~ of the x" integration by 
infinity. Thus, for very large Ltt, x(Tc) in fact does not depend on Lit. 
Using now once more Eq. (2.9) yields 

<1~1 >~ oc (LI?'L2-") ''2 

= LZ,/v (L• ''2, 
\-~HJ LLI >> L" (2.21) 

Equation (2.13) also holds in this case, but now it is clear that the distribu- 
tion of the order parameter ~ in a system with Lll >> L• is a Gaussian even 
at To, consistent with the exponential vanishing of the correlation function, 
Eq. (2.19). Thus, g(Lll >> L•  0 as L i t - .  oo. In fact one can show that g 
vanishes proportional to the inverse of the larger linear dimension of the 
system, ('4) 

g(Tc)~-(L• *, LtI>> L• (2.22) 

where g* is a (universal) constant which has been estimated from 
extrapolation of transfer matrix results and conformal invariance as (i4) 
g* ~ 3.96. 

2.3. Shape Effects on Finite-Size Scaling in Two-D imens iona l  
Anisotropic  Models  

As is well known, the standard lattice anisotropy where exchange con- 
stants Jll and J• are taken to be different in the two lattice directions 
induces an anisotropy only in the critical amplitudes of the correlation 
lengths ~tt and ~a in the two lattice directions, while the critical exponent 
v remains the same in both directions and still retains its isotropic value. (4~ 
With a suitable rescaling of the units of lengths in x and y directions, (4~ 
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Eq. (2.1) still holds and thus the analysis of Section 2.2 still applies. Such 
a situation will not be discussed further here. 

Instead we are interested in a more essential kind of anisotropy where 
ill and ~• diverge with different exponents v H, v• [Eqs. (1.8), (1.9)] as Tc 
is approached. We now assume that a generalization of Eq. (2.1) holds, as 
follows: 

(Tt(0, 0) ~U(x, y ) > T < - x - " "  f , , , (2.23) 
I 4• Lli 

Related scaling hypotheses were assumed for directed percolation, ~ 
while for directed self-avoiding walks this form of finite-size scaling does 
not hold (38) and is replaced by a weaker form of scaling, which will not be 
discussed at this point (but see Section 2.6 below). Right at Tc we eliminate 
~ii, 4• from the scaling function f by redefining it as 

f ( z l ,  z2, z3, z4) = f ' ( z l  z3, Z2Z4, Z31zV4H/VL~, Z4) 

and defining its limiting function 

r ( X  LH " ] (2.24) lira f '  Y = . - -  , 

z 4 ~  Lli L• L~/V• 

Then Eq. (2.23) becomes 

RSF( x y L ~ " )  (2.25) <7"(0, o) ~e(x, y)>T<~_x - . ,  - ,  , 
LI IL i  i 

If we consider again a subsystem of an infinite system, F must in fact be 
independent of both Lil and L•  which implies that F(z~,z2, z3)= 
jT(zlz~lllviz3), i.e., 

< gt(O, O) gt(x, Y)>r~ -~ x-'~'~sjT(x/Y '''/'~• (2.26) 

where jT(z ~ oo ) - ,  const and 

jT(z ~ O) oc z'~l s'~z/'~]J (2.27) 

in order that 

<~(0,0) ~(x, 0)>~ oc x-.,~ ~, <~u(0,0) ~(0, y)>T< ocy -.~"s 

[ .  R S  . R S  in the notation of ref. 35. Of course, the isotropic case tqil =q•  =tl, 
vii = v• = v) considered in Eq. (2.2) still is a special case of this description; 
one just has to take f ( x / y ) = ( 1  +y2/xZ)-';/2 in Eq. (2.26). In the 

822/55/1-2-7 



96 Binder and Wang 

anisotropic case, the condition that for x ~ O ,  y r  the factor x-"~ ~ 
cancels out yields a scaling law 

r/~ISvll = qRSv• (2.28) 

A generalization of Eq, (2.28) for arbitrary dimensions d is 

( d -  2 + q~S)vll = ( d -  2 + ~/RS) V• (2.29) 

It is interesting to note that for the field-theoretic version of the driven 
Kawasaki model (34'35) Eq. (2.29) holds with the predicted exponents in 
Eq. (1.11) for 2 ~<d~< 5, while the generalized hyperscaling relation (1.10) 
does not hold except for d = 2 .  Since at d = 2  a variable which was 
"dangerously irrelevant" for d > 2  (in a renormalization group sense (4~)) 
becomes relevant, one should expect logarithmic corrections to the simple 
scaling behavior as it is assumed here. However, since we do not see any 
firm method to predict such logarithmic correction terms quantitatively, we 
disregard them throughout in our analysis. Thus, it is not clear to which 
model Eqs. (2.23)-(2.28) actually apply as they stand. 

Accepting thus Eqs. (2.23)-(2.28) as a working hypothesis, we may 
still replace the sum in Eq. (2.4) by integrals [-Eq. (2.5)], provided that 
~/~s < 1, q RS < 1, to obtain for the subsystem geometry 

2 f LH ; : J - f , : "  X l R S f : •  y, 
kBTcZ(Tc) , ,~LI IL•  J ~ dxl  dyl  d x x  -"H 

(2.30) 

which becomes after simple rescaling of integration variables 

1 RS /-1 1 
k ,  T c z ( T c ) , ~ 2 L i L p  P ,7,, Jo dx', fo dy', 

• dx' dy'  } (2.31) 

As a consequence, we predict 

Rs~ L -{ LH "] 
1-,,~s x, \L~'/v~/I (2.32) 

where ~ and ~' are suitable scaling functions. Invoking the scaling law (35) 

2 - rlt t = v• + 1 - rl~ s = 7/vlt (2.33) 
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one can express z(T~) also in terms of the exponent qll describing the varia- 
tion ,of the wavevector-dependent susceptibility )~(kii, T~) oc k It (2-,~), 

kBT~z(T~)~-L~i  "")~' ( + )  (2.34) 

Again we deduce the limiting behavior of x(T~) when LID is large or small 
>~ r~H/~ it is basically f(oe) ,  which in comparison with L ~  ~/~. For LI I , -~_  , 

matters since x ' /y '  ~H/~• is mostly of order unity in the integration domain of 
�9 RS . . . .  

the integral, Eq. (2.31). Thus we must have z(T~)ocL• ~, in this limit, 
which implies that )~' in Eqs. (2.32) and (2.34) behaves as 

~' (z -+ ~ )w.z -~/~" 

for the subsystem geometry. In the inverse limit, 
behavior of Eq. (2.27) which matters, and hence 

(2.35) 

Lii ~L~_ ~/~', it is the 

d x  t X/ _ _ r / l R S x .  __ RS q ~  v z / v l l  

(2.36) 

(2.37) 

using once more Eq. (2.28). Due to Eqs. (2.28) and (2.33) we can rewrite 
these results in terms of only the exponents 7, v• and vii" 

)~( Tc) ~: L•  r ~/~ll- ~• L ~I/~ ~11 , Lll >> (2.38) 

r ~lvll ~ r ~l~ L ~ II~l (2.39) )~( Tc) oc ~u ~ • , LII ~ 

z(T~) oc LII L ~  ~ -  vH/~• L u ~ L~  I/~ (2.40) 

When vii = v• Eqs. (2.38) and (2.40) are identical if one replaces L u by 
L• Then the symmetry property of the scaling function )~ in the isotropic 
case, ~(LII/L • = ~ (L •  u), is recovered, while in the anisotropic case there 
is no such symmetry. 

Estimating once more order parameters from Eq. (2.9) yields a 
generalization of Eq. (2.11 ), 

( l ~ [ ) r c  oc LJ/~Jp, Lu>>L~l/v• (2.41) 

( [gt l ) re  oc L Z  ~/vi, L u ~LV~ I/v~ (2.42) 

k B f c Z( f ~ ) ,.~ L ~ L ~r- '7,~ s dx' 1 dy'~ 

which yields 

, .s ( , _ . s  
z(Tc) oc L z  LII-"II = \L~,/v.LJ LI IL•  
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The obvious generalization of Eq. (2.13) is 

g(T~) ~- ~(Lit/L~ 'lye) (2.43) 

The case of the fully finite geometry (Lti •177 with periodic boundary 
conditions) is treated similarly, using Eq. (2.25) in Eq. (2.15), to obtain 

/'LII fO L• RS I F x Y  LI,"] 
kBTc,~(T~)~-Jo dx dyx-'7,r -'Ltl L+' L~_,/"• (2.44) 

Equation (2.44) implies the same general scaling structure as found in 
Eq. (2.32), 

1 -- RS ('1 RS /-1 ( LI I "~ 
" 'Jo ax'x'-"" Jo Uy'F J 

= L• )~ (2.45) 

But now the behavior of the function F will again be governed by exponen- 
tial decays with x' (if Ltt >> L~ ~/~) or wi]h y' (if Lit ~ L~ ~/~• and only for 
LII ~ L] b/~ do we have X(Tc)~L• 
We thus put 

(Liix')-'l,~SF x',Y',L.)l~,,l-,,~ exp L 

r~s ( x'LIl'~ (2.46) 
= LZ"" exp L~l/,,.,] 

_ Rs ( , L,, ~ 0 ) ~ :  \ -L~/~, , j  (Liix') ",t F x ,  Y', L~,/~• L~l~Sexp{ y'L___&'~ (2.47) 

since a finite length L• ~ L~ff ~H introduces a decay constant L~ ~/~l in the 
parallel direction, while in the inverse limit LII ~ L~/~l we expect a decay 
constant L~/vH in the transverse direction, the correlation function being 
basically uniform in the other direction in each case. Equations (2.45)- 
(2.47), and (2.9) yield 

z(Tc) oc L~ v~, <l~l \/Tc~:~ ~r7/2~1 1/2L~ (1/2, Lt t >>L~ I/v~ (2.48) 

X(Zc) oc t~ff 't, <l~l"/Tc~--~'ll"-rT/2vH t/2L-1/2• , Lit ~L~  '/~ (2.49) 

Note that again we have omitted possible constant prefactors in the 
arguments of the exponentials in both Eq. (2.46) and (2.47), since we are 



Finite-Size Effects at Critical Points 99 

interested only in the exponents but not in the prefactors in the power 
laws, Eqs. (2.48) and (2.49). 

2.4. Anisotropic Finite-Size Scaling in General Dimensions 
and the Relation to Generalized Hyperscaling 

We now return to a d-dimensional uniaxially anisotropic system with 
a local order parameter ~U(x~ ..... xd_ 1, z), with the d - 1  transverse coor- 
dinates x/ and one longitudinal coordinate z. For T~> T~ the correlation 
function is assumed to scale like 

<~T/(0 ..... 0) ~Dr(X 1 : 0  ..... Xd_ 1 :0 ,  Z)> T 

~- z-~d-2+",~s~c~ ( ~ )  (2.50) 

<~e(0 ..... 0) V'(xl=0 . . . .  , x j  . . . .  , x,~_ ~ =0, z=0)>:~ 

-~ x f ( d -  2 +"RS)(~I (~-~), j = l ,  ..., d--1  (2.51) 

consistent with the previous subsection. The fluctuation relation for the 
susceptibility [Eq. (1.4) or (2.4), respectively] now needs to be slightly 
generalized as 

kB TZ = Lij L a- 1(< ~/2)T - < I ~[/[ >2) (2.52) 

where the difference between T<Tc  [for which Eq. (2.52) holds as it 
stands] and T >  Tc l-for which the term <lV'l >~ needs to be omitted, cf. 
Eq. (1.4)] will be disregarded, since it affects only prefactors (critical 
amplitudes) and not exponents, if hyperscaling holds. 

It is tempting to generalize Eqs. (1.3) and (1.6) to the anisotropic 
situation as follows, motivated by Eq. (2.23): 

(1 ~u I >~--- LHa/~"f,(~H/Lli, ~•177 (2.53) 

kB TZ ~- L ~(V" f 2( r 8 • • ) (2.54) 

with f l ,  f2 suitable scaling functions. It is clear that for T =  Tc Eqs. (2.53) 
and (2.54) are compatible with Eqs. (2.39), (2.41), or (2.49) of the previous 
subsection. 

Now the generalized hyperscaling relation (1.10) is realized if we 
require, in the same spirit as in Eq. (2.9), that <l ~ul >2r and < ~ 2 > r  scale in 
the same way, i.e., 

(, ~u~>~ ~ L?(~/~,~ f / ( ~ H / L H ,  r 1 7 7  (2.55) 
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Now Eqs. (2.52), (2.53), and (2.55) yield 

kB Tz ~- ~• l r l -  z#/~Ll { f  , ~ • z) - f21(~II/LII, ~ a /L•  } 

= L~  1L]I-z~/~'t(L•162 ) (d-l)f2(~ll/Lii ' ~•177 (2.56) 

In the last step we have split off the curly bracket in the first line of 
Eq. (2.56) a factor 

[ (L ~/~ • )/(Lll/~lt )v~/~, ] l  - ~ ( L . / L ~ r  )~ - ~ 

constructed such that the temperature dependence cancels out and that it 
cancels the factor LaS ~. The remaining part of the scaling function is called 
f2, since the result of this procedure 

k ,  TZ ~ L ~I § ~d- ' ~ / v " ) -  2~/~" A (  ~ll/Lit, ~ •  I ) (2.57) 

has precisely the form postulated in Eq. (2.54). Comparing the exponent 
7~vii of the power law prefactor L~( ~L to the exponent of the power law 
prefactor in Eq. (2.57) yields the generalized hyperscaling law (1.10). This 
simple reasoning generalizes an analogous relation ~5'~6) between Eqs. (1.3), 
(1.6), and (1.7). 

2.5. Modified Finite-Size Scaling in Isotropic Systems 
above their Marginal Dimension 

In this section we consider Ising-like models at dimensionalities d > d*, 
where the critical behavior hence is mean-field-like~2~ fl = 1/2, y = 1, v = 1/2, 
d* = 4. Calculating the partition function [r = (xl ,  ..., Xd- 1, Z) = (X• Z)], 

f D~(r)  exp[-Herr{ ~}]  (2.58) Z =  

with a Ginzburg-Laudau-type Hamiltonian (Uo, t are constants), 

H e ~ { ~ } = f d r  (V~)Z +~  t~2 + ~v. ~4 (2.59) 

the order parameter fluctuations can be treated as a perturbation in com- 
parison with the mean-field behavior. Note that units of ~ and of length 
have been defined such that there are no further constants multiplying the 
terms �89 2 and �89 t2. 

In a finite system with one linear dimension Lll and d - 1  linear 
dimensions L• and periodic boundary conditions in all directions, we can 
write 

7t(x• z) = ~ +  ~ ~ exp(iq• .x• + iqltz) 6~q~,q~, (2.60) 
q• qll 
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where the components of qz are "quantized" in units of 2re~L• and qil is 
quantized in units of 2zr/LII. For the moment, we assume L• and Lit to be 
of the same order. It can be shown that while the average order parameter 
mode ~ cannot be treated perturbatively, all the fluctuations ~ 7'. _ are _ "t • 
separated by a finite gap from this mode ~f, and can be integrated out. (12~ 
Basically the finite-size effects are understood (~~ by writing the partition 
function as 

= f d ~  exp [ - H ( ~ ) ]  (2.61) Z 

H(gt)= Ll~L~-l [~ "~'2 ' u~ gt4 " 4 ,  (2.62) 

which means we work with an order parameter probability distributions 
function PL~.L~(~ u) in a finite system as follows: 

_~ UO 11 Pc[,,L• t~  2 -.~.. ~2) LI,La- (2.63) 

From Eq. (2.63), the behavior at T c (i.e., t = 0 )  is straightforwardly 
obtained as 

) r = ~  ~ ~exp[--(Uo/4!)gt4LllL~ -1] d~  (l'ei J;~ exp[-(Uo/4!)~4LllL~-l] dg-" oc (LHL~-I)1/4 (2.64) 

z(Tc) oc (LiiL~-1)1/2 (2.65) 

and g(Tc) [Eq. (2.12)] is a constant which has been calculated. <12> It is 
seen that for Ll l~L l ,  Eq. (2.64) agrees with Eq. (1.3) ((l~ul)rcoc 
LfJ/~oc LIT 1 with mean-field exponents) only for d = 4 ,  and similarly 
Eq. (2.65) agrees with Eq. (1.6) [z(Tc) oc L~( v oc L~t with mean-field 
exponents] for d =  4, but not for d >  4. 4 

It turns out, however, that finite-size effects for d > 4  can be under- 
stood in terms of a simple modified form of finite-size scaling, where Lii  
and L1 are not scaled with the correlation length ~ but with a "thermo- 
dynamic length" l. (l~ This is recognized most simply from Eq, (2.63) by 
noting that away from T~ Eq. (2.63) can be written, considering the limit 
Lif ~ v% L~ ~ o% in the form 

PLH,L~(7 t) OC exp 2kBTz> LilLai 1 , T> T~ (2.66) 

4 At d= 4 logarithmic correction factors to these power laws o c c u r  (13'19) which are outside of 
consideration here. 
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where ks TZ > = t 1, and 

( V - -  ~sp) 2 LltL d 1] PLII,L~(~) oC exp -- 2kBTz< 

+ e x p [  (F '+ ~')2 "2-~aT-~< L,,L• 1], T< T~ (2.67) 

k s T x < = ( t + u o ~ p / 2 )  ~ = ( - 2 t )  '. Both with ~p  = (-6t/uo) l/2 and 
Eqs. (2.66) and (2.67) can be considered as limiting forms of a general 
scaling expression 

z;ll L.~ 
ecH.l.~(~) ~ Itl-~/3 ~lt l-~,  ~,  7 J  (2.68) 

where the "thermodynamic length" l is defined as (1~ [kB TX> = F+t -v, 
k B T z < = F  ( - t ) - 7 ;  in the present case, ~sp=/~(-t)r  with critical 
amplitudes F+, F , / ~ ]  

l=(kBTcF+)l/dlt[_(2~+v)/d~ [tl_~, ~ _ 2 f l + ?  (2.69) 
d 

Then Eqs. (2.66) and (2.67) simply become, in terms of the scaled order 
parameter ~--- hult[-8, 

PLqI,r~(7 t) oc exp[-�89 t > 0  (2.70) 

PL,,,L,(hu) oc exp[-- �89162 ( r + / r ) ( L , / l l ( L •  d 11 

+ e x p [ -  �89 2 (r+/r_)(LH/t)(L•  t < 0  
(2.71) 

Comparing Eqs. (2.63) and (2.68), it is obvious that Eq. (2.68) holds in the 
mean-field region for d>cl*, with y =  1, fl= 1/2, and q=2/d then. But 
Eq. (2.68) also holds in the nontrivial critical region for d<  4, where hyper- 
scaling holds and q = v. In fact, the fluctuation relation (2.66) is always true 
in the disordered phase for the considered limit, and also Eq. (2.67) holds 
provided F r is close to either ~p  or to - ~p,  and Lll and L• are of the 
same order. A very different behavior will be found when LII~>L • 
however. This is the case to be studied in the next subsection. 

2.6. Shape Effects on Finite-Size Scaling in Isotropic Systems 
above Their Marginal Dimension 

When we consider a geometry with L H >> L• even in the mean-field 
limit it is no longer legitimate to replace the functional integral (2.58) by 
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the simple integral (2.61), where all fluctuations 6~t~/q• are neglected in 

comparison with the homogeneous order parameter ~. While it is still 
appropriate to neglect the transverse fluctuations, inhomogeneities in the 
longitudinal direction must be allowed for. Thus, it is convenient to 
introduce a Fourier transform in the transverse directions only, 

7 J ( x •  ~, exp(iq•177 ) (2.72) 
q• 

Still the components of q• are quantized in unit of 2re~L• The 
"dangerous" mode which cannot be treated perturbatively corresponds to 
q• =0, and gt(z) in Eq. (2.72) simply means 6gt%=o(Z)+ ~. The modes 
with q• ~ 0  are separated by a finite gap from this mode; they can be 
treated perturbatively and are integrated out. Zinn-Justin and Br6zin (12) 
show that this type of perturbation theory converges for dimensionalities d 
exceeding the marginal dimension d*; the perturbative terms yield correc- 
tions to finite-size scaling only. 

We shall not repeat any details of this calculation (12) here, but we 
explore the fact that for L H >> L• the partition function Z in Eq. (2.58) can 
be essentially written as a functional integral with a Hamiltonian for a one- 
dimensional problem, 

= f Dgt(z) exp[ -He~{ gt}] (2.73) Z 

Heft{ ~-/} ~- L d - 1  ~ " LII dz + t~/2 -~ ~i r/4 (2.74) 
~o 2 4! 

Since the system described by Eqs. (2.73), (2.74) is basically quasi-one- 
dimensional, the crucial quantity of interest is the correlation function 
(gt(0) g~(Z))L.,T and associated correlation length r177 T), 

(g'(0) g'(z))LI.T~A(L• T)exp r177 T) ' L• r  L H (2.75) 

Since Eqs. (2.73) and (2.74) describe essentially a field theory of the one- 
dimensional Ising model, it is clear that the correlation function (2.75) 
should have just a constant amplitude factor A(L• T) in front of the 
exponential; no power law prefactor such as contained in Eq. (2.50) should 
appear. If we know A(L• T) and ~(L• T) in Eq. (2.75), we can infer the 
finite-size behavior of the susceptibility as 

"JO 
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Assuming once more that the order parameter <l~l > is of the same order 
as the root mean square order parameter < g~2 )1/2 = [kB Tz/(LuLaS 1)] m, 
we obtain 

<l~Ul)~177 L ~ 1 - e x p [  r  (2.77) 

We now estimate both r177 T) and A(L• T) from simple dimen- 
sional analysis arguments: the scaling behavior of the theory can thus be 
found without the need to actually evaluate the functional integral (2.73) 
precisely. Our reasoning is as follows. 

For t~>0 (we consider here T~> T~ only) the minimum of Herf(g t) is 
given by He~(gtmin) =0, with ~Umin(z)=0. Now only such paths gt(z) will 
contribute to the path integral (2.73) significantly for which Herr(gt) is of 
order unity and thus are sufficiently "close" to ~mi,(z). Paths gt(z) for 
which Hefr(gt) is much larger than unity have negligible statistical weight. 

We consider "typical" paths of the trial function form ~(z )=  gJ0 
e x p ( - z / l )  consistent with a correlation function of the form (2.75). Here 
~o and ~ have to be chosen such that He~(g t) is of order unity for such a 
typical path. Apart from constants of order unity, these terms in the 
bracket of Eq. (2.74) contribute to Herf(g t) the terms 

L~-I~/~ ,  La• ItTt2~o~, La-auogt4~ (2.78) 

which for t ~> 0 are all nonnegative. For T sufficiently above Tc the first two 
terms actually dominate, and for the typical paths both of them should give 
contributions of the same order, namely the order unity. Putting all 
proportionality constants equal to unity for simplicity, we thus obtain 

Ld-1 2 d 1 2 ~Uo/~ = L• tTto ~ = 1 (2.79) 

Equation (2.79) yields the classical mean-field result (oc  t -'/2 and 
gig oct-1/2/L d-1 and since A(L• T) is proportional to ~o 2, we get from 
Eq. (2.76) 

Z ~: t - l [  -1 -exp(-Lu/t-1/2)] ~ t-1 

Thus, for T sufficiently above Tc the dimensional analysis method outlined 
above recovers the standard mean-field results, as it should. 

More interesting is the behavior right at Tc, where the second term in 
Eq. (2.78) vanishes. Now we have to equate the first and the third terms in 
Eq. (2.78) to each other and to unity to characterize a typical path: 

L d-1 7to2/~o = L d- 'Uo 7t4r = 1 (2.80) 
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from which the correlation length at t = 0 (called ~o) follows as 

~0 = uol/3L(ff 1)/3 (2.81) 

and gig = (Uor -1. Equation (2.81) is a special case of Eq. (4.11) of Zinn- 
Justin and Br6zin, (~2) who quote a general scaling form describing the 
crossover from ~(L• T) oct -~/2 to ~o, 

~(L• ~'((---~ ct3)~ ( (2.82) 

The fact that such a scaling must hold is simply anticipated from 
Eq. (2.74), which can be rescaled (for LII ~ ~ )  by defining z', 7" via 

z' = Uo~/6~o z, ~' = ~u~/6/~o (2.83) 

which yields 

H ( ~ ' )  = u o 2 L ~  '~- ~ I -~ 
Jo 

implying 

dz' {~ k--~-z' J(d~'~2 + 21 tUo2/3L~ d 1)/3~,z +~Uo ~14} 

(2.84) 

~(L• T) ~- u o 1/3L~-1)/3~(tUo2/3L~ a- 1)/3) (2.85) 

which is equivalent to Eq. (2.82). Zinn-Justin and Br6zin (12) obtained this 
result from giving Eq. (2.74) a quantum mechanical interpretation, the 
term �89 2 being interpreted as resulting from the kinetic energy term 
in the Feynman path integral representation. We here give a detailed 
rederivation of their results in slightly different terms, since we wish to 
generalize our method to cases where there is no obvious kinetic energy 
interpretation of the term replacing the gradient energy term. 

Since the amplitude A(L• To) in Eq. (2.75) is basically proportional 
to ~t2 =Uol/3Lz2(d-1)/3, we find from Eqs. (2.76), (2.77) for Lll ~ 

k~Tcz(Tc) w. L~a-~)/3=L~2L~ -4)/6, LII ~ ~ (2.86) 

(I~I)T~ < L~ (d 1)/6LII1/2=(LIIL• LII ~ ~ (2.87) 

For Lll finite, Eqs. (2.75)-(2.77) imply that Lll scales with ~o = 
~(L• Tc) oc t(z d-1)/3, 

kB ZcZ(Tc ) ,.~ tdS2t(dz_4)/6~ I t •  T (d_4)/3x~ (2.88) \L,, ; 

(I 7"1 )T,-~ (tlltz)-l/2z• (2.89) 
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where the explicit form of the scaling functions )~, ~ follows from the curly 
bracket in Eqs. (2.76), (2.77). We have )~(( ~ 0) = const, ~(~ ~ 0) = const, 
reproducing Eqs. (2.86), (2.87), while in the inverse limit we recover 

kB Tr Tr ..~ A(L•  , T~)L~- I L)I oc L ~ -  l)/3Lll 

This happens when Lll is of the order of L(ff -1)/3, and then kBTcz(T~) oc 
L~  a-1)/3. On the other hand, for Lll <<.L(~ -1)/3 the correlation function 
(2.75) implies that ~u is essentially homogeneous over the finite system, and 
hence the treatment of the previous section applies: using Eq. (2.65), 
Z(Tc) oc (LllL• 1/2 for Lll = L ~  -1)/3, we in fact obtain z(T~) oc L~ d-1)/3, 
which shows that for LII of the order of L ~  -~)/3 a smooth crossover 
between Eq. (2.65) and Eq. (2.88) occurs. Of course, Eqs. (2.75)-(2.77) 
cannot be used for L I I ~ L ~  -])/3, since then the discreteness of q[I in 
Eq. (2.60) needs to be taken into account, and one must no longer treat z 
as a continuous variable in Eq. (2.74). Thus, Eqs. (2.76) and (2.77) 
describe the scaling functions ;~((), ~(( )  in Eqs. (2.88), (2.89) only for 

~< 1. The behavior of the scaling function for large ( simply is found from 
Eqs. (2.64) and (2.65), namely 

~((-- ,  oo) oc (-~/~ , q'((--) c~) oc ~-  ~/" (2.90) 

Let us also discuss the generalization of Eqs. (2.88) and (2.89) to non- 
critical temperatures. Since at Tc, Lil scales with ~o, Eq. (2.81), we now 
simply have to scale Lll with ~(L• T) as obtained in Eq. (2.85) or (2.82), 
respectively. At the same time, however, we must include a second 
argument L• -2/d in the scaling function, representing the scaling with the 
"thermodynamic length" which takes over in the case L• = Lll. Thus, we 
conclude 

kB Tz( T, L • , LII ) 

4>/6  ( 
t _----ff d , - -  

<1~'1 ) T,L• 

t -  1/2 

-t) (2.91) 

Equations (2.91) and (2.92) manifestly exhibit that there is no simple finite- 
size scaling for d > d *  =4.  Three different lengths come into play, the 
bulk correlation length (r oC t -v=t -1 /2) ,  the thermodynamic length 
(l oc t - ~ =  t-2/a), and the "longitudinal length" r177 T), which crosses 
over from ~b to 40 OC L ~  -1)/3 as t - ) 0 .  

)) " ( L I I L j - ) - t / 2 L Z ( d - 4 ) / 6 ~ \ t  2/d LI i ~" L ~  -4)/3 (2.92) 
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We emphasize at this point that all our considerations in this section 
refer to systems with periodic boundary conditions. The case of free bound- 
ary condition for an Ising-like system for d > d *  = 4  was considered by 
Rudnick et aL (42) They found that one has to replace the reduced tem- 
perature t =  ( T - T c ) / T c  by a shifted reduced temperature defined by 

7= t + F+ 7r[ (d-  1)/L 2 + 1/L~] (2.93) 

where F+ is the constant in the law kB Tx( T ~  T +, L j_ ~ o% L u -~ oo)= 
L+ t 1. We suggest that Eqs. (2.91) and (2.92) hold for free boundary 
conditions if t is replaced by 7. It is clear that a different behavior occurs 
for subsystems of size L ~ - I L u  of an infinite system: there we still can 
invoke an approach analogous to Eq. (2.4), namely 

1 L• L• Lil 

Xl=l Xd_l~1 z = l  
L• L• Lll 

X s . --  Z E {~//(Xl .... ' X d - - l ' Z )  ~'l(Xtl . . . .  ' X t c l - - l ' Z ' ) )  

xi=l x;_,=l z'=l (2.94) 

and use the mean-field correlation function, which behaves as follows: 

(~ (0 )  ~(r)} ----- r-(a-2+")G(r/~b) (2.95) 

with r/= 0 and the scaling function becoming G(z) oc e x p ( - z )  for large z. 
From Eqs, (2.94) and (2.95) we conclude 

fo f[ - '  1 • " -LdXtd_lfLIIdz,~ L• Xldx1...  
kBT~z(I~)  oc LuLd_  I ~o ~o 

[Ll-x~_~ [L,,-z, 
X d X d _  1 d z ( x 2 . . ~  - "'" " ~ X 2 1 q - Z 2 )  - ( d - 2 ) / 2  

"JO JO 

(2.96) 

and rescaling variables, this becomes 

"'" 1 dxl"" 

f -- ' fO' -- x '  

1 Xd- 1 
x dXd_ 1 dz 

"JO 

x . . .  + x ;  (2.97) 
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It is seen that for Lil <~ L• as well as for Lii ~ L• the result simply is of the 
order of 

kBT<z(Tc) oc LHLj. (2.98) 

in contrast to Eq. (2.65) (which holds under the same conditions on Lii, L• 
for periodic boundary conditions and for free boundary conditions, (42) 
respectively). The result that different boundary conditions yield different 
power laws in the finite-size dependence at Tc is another signature of the 
breakdown of finite-size scaling in the standard form. 

At this point, we recall that for directed random walks which show 
rather special finite-size scaling properties (38) the upper critical dimension is 
d * = l .  

While most of the new results in this section [-such as Eqs. (2.88}- 
(2.92)] are fairly straightforward extensions of known results, ~12) the full 
power of our approach will become evident in the next subsections where 
we consider other models. 

2.7. Isotropic Lifshitz Points 

For an isotropic Lifshitz point, (21-23) the coefficient of the gradient 
term vanishes and thus Heff(~u) is no longer given by Eq. (2.59); instead a 
term (V 2 ~u)2 needs to be considered, 

1 t 2 Uo ~u4] (2.99) H e f r { ~ } = f d r I ~ ( V 2 ~ u ) 2 + 2  ~ +4!  

Again units of ~ and of lengths have been defined such that there are no 
further constants multiplying the terms �89 2 and �89 2. While now the 
marginal dimension d* [where Eq. (1.7) is satisfied with mean-field 
exponents] is d*  = 8, since v = 1/4 in the mean field theory, the treatment 
of Section 2.5 still holds for systems with d >  d*  with Lii and L• being of 
the same order. However, an interesting distinction occurs for systems 
having very anisotropic shapes, Lit ~>L• Now the same reasoning as 
expressed in Eqs. (2.72) and (2.73) applies, but Eq. (2.74) gets replaced by 

plr 2 1 2 uo ] 
Ho~(~)=L~ '~"dZL2t,-d-2-z2,]~o +2 t +~-. 7x4 (2.100) 

While it is not obvious how to interpret this in terms of Schr6dinger quan- 
tum mechanics and thus we cannot apply the method of Zinn-Justin and 
Br6zin (12) straightforwardly as it stands, the simple argument of estimating 
the relevant contribution to the path integral [-analogous to Eqs. (2.75)- 
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(2.80)] still works. Using again ~ =  ~o e x p ( - z / i )  as a trial function in the 
path integral, the three terms resulting from the bracket of Eq. (2.100) 
make contributions of the order of 

Z ~ - I  ~rt2/~ 3, a - 1  2 L• t7'o4, L~_ 1Uo~U44 (2.101) 

For T sufficiently above Tc the first two terms dominate, and putting them 
equal to each other and equal to unity yields 

Ld ,tu2/~3_ru 1,to2 = , ~g=t-3/4/Laz -1 (2.102) • J0 /~  - ~ •  , - -o~=1 ,  ~ t 1/4 

Since again A(L• T) oc 7 ~2, we conclude that kBTz oc A(L• T) 
Ld-14oc t -1, as expected. Again the more interesting case is t = 0, where 

L~_-I 2 3 ~/0/~0 = z d - l U O  ~ ; 4 0  = 1, ~ o  2 = 1/Uo44 (2.103) 

and 
40 = Uo U7L~ - '  )/7 = uo ,/7L• L ~ -  8)/7 (2.104) 

It is clear that Hefr(~) can be rescaled ( ~  ~u,, z ~ z ' )  in much the same 
way as done in Eq. (2.84), and hence we derive for 4(L• T) the scaling 
behavior 

4(L• T) ~ t='/4~ ( tZ_~/4 L ~-8)/7 ) (2.105) 

with the scaling function ~'(~ ~ 0) oc ~ in order that Eq. (2.105) reduces to 
Eq. (2.104) as t ~ 0. The formulas analogous to Eqs. (2.86)-(2.89) become, 
noting ~J2OCUo3/7L~_ 4(d-1)/7 and using Eqs. (2.76) and (2.77) with 
A(L• T) w_ ~F~, 

kBT~z(T~) oc L~a-')/V=L~2L(ff-8)/14, LII ~ ~ (2.106) 

(1~1)v= oc L• (L3LII)-I/2L~ 3(d-8)/14, LII ~ 

(2.107) 

Note, however, that Eqs. (2.106) and (2.107) are only assumed to hold if 
d >  d *  = 8, while Eqs. (2.86) and (2.87) are thought to hold for d >  d * =  4. 

Since for Lji finite Lll scales with r177 T~)= 4o Qc L~-1)/7, we find 
relations analogous to Eqs. (2.88) and (2.89), 

kB TcZ( Tc) '~ t d/2 r (d- S)/14"7' ( L-~l I ) 
- -  ~ •  ,-~• ~ Z ~  -8)/7 (2.108) 

(I~I )rc~ (L3 LII)-I/2 L 3~a-8'/14~(L-~II L~-8'/7 ) (2.109) 
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With ~(( ~ ~ )  ~ ( -  1/2, ~t(ff ...+ O0 ) ~ ~ 1/4 the results for the homogeneous 
case [Eqs. (2.64) and (2.65)] are recovered. The smooth crossover between 
Eqs. (2.106), (2.107), and Eqs. (2.64), (2.65) now occurs for 

Li l  oc:: L•177 (2.110) 

while for ordinary critical phenomena the crossover between Eqs. (2.64), 
(2.65) and Eqs. (2.86), (2.87) occurs for 

LII ~ L •  (2.111) 

2.8. Uniaxial Lifshitz Points 

For a uniaxial Lifshitz point, (21 23) there exists a special direction 
(which we take the z direction) for which the coefficient of the term 
(Sgt/Cz) 2 in the gradient energy vanishes, while the coefficients of all other 
terms, (8~S/Oxj) 2, j =  1 ..... xa 1, stay nonzero. Thus, an appropriate effec- 
tive Hamiltonian is, instead of Eq. (2.99), 

[ld~I/O~S\ 2 1 //~2 ~r#'~ 2 1 ] 
Heff { ~-# } : f dr L-~ j = l t-~Xj ) "q- "~ t--'~'-~-z2 ) -I'-~tl//+2-t-~'l ~itr#4 (2.112) 

For simplicity, a constant of order unity in front of the term (C 2 ~#/I~Z2) 2 has 
been suppressed. Computing the wavevector-dependent susceptibility Z(q) 
in mean-field theory from Eq. (2.112), one finds that (21) 

[z(q)] -1 oc t(1 2 2 + q• ~• + q~t ~l) (2.113) 

where q= (q •  and qH is the component in the z direction, and the 
correlation lengths ~tl, 4• in the longitudinal and transverse directions 
behave as 

~tt oc t - %  ~•  oc t -v•  vii = 1/4, v•  = 1/2 (2 .114)  

in mean-field theory. The generalized hyperscaling relation (1.10) for this 
uniaxially anisotropic situation holds (21) for d~< d * =  4.5 but is invalid for 
d >  d*, the situation to be considered here. 

Due to the anisotropy of the correlation lengths ~lt, ~• one can no 
longer conclude that the treatment of Section 2.5 holds for Lit, L• being of 
the same order. Let us therefore first consider the situation where Lit is suf- 
ficiently large that nonuniformities in the z direction need to be considered, 
while in all other directions 7 s is taken as uniform, and identify later the 
inequality relating Lit and L• that must be satisfied in order that this 
assumption holds. In any case, in this situation the effective Hamiltonian 
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once more is given by Eq. (2.100), and the arguments described in 
Eqs. (2.101)-(2.110) go through as they stand, the only difference being 
that they now not only hold for d >  8 but for d >  d* =4.5. This suggests 
that we should rewrite the exponent y=(d-8) /7  in the relation 
Lil oc L~ +y [Eq. (2.110)] for the linear dimension LII where the smooth 
crossover occurs between the uniform behavior of the finite system 
[Eqs. (2.64) and (2.65)] and the nonuniform behavior in the z direction 
[Eqs. (2.106) and (2.107)]: we do this by relating y to the marginal dimen- 
sion d * =  4.5 as 

d - d *  1 
Y= 7 2' Lll ~ L~2L~-CI*)/7' d > d * = 4 . 5  (2.115) 

Also, Eqs. (2.108) and (2.109) can be rewritten in a form which emphasizes 
the smooth crossover at LID as given by Eq. (2.115) more clearly, 

~ / L  112 ) 
kBZc)((Tc)~- Z~2-1/4Z(ff-d*)/14X. ~-~ll Z(ff-d*)/7 (2.116) 

/Lll  2 \ 
~L-3/4L 1/2L--3(d--d*)/14~l~• L(~-d*)/7~ (2.117) <1~1 >To- �9 tl • \L I I  ) 

It is reassuring to note that at d = d * = 4 . 5 ,  neglecting the expected 
logarithmic correction, we obtain from Eq. (2.116) precisely the same 
behavior as from Eq. (2.34), rewritten in the form 

\L~,/v~] \ Lit ) (2.118) 

if we use 7=  1, vii = 1/4, v• = 1/2 [Eqs. (2.113) and (2.114)], and then 
kBTcz(T~) ~- L22(L~2/Lll). Assuming one more time that 

<l~Ul )T~. ( , / ,2)~2= [kBTcX(Tc)/Lai ,Lii]x/2 

yields then 

/ r t/*l \ I" 3/4f -1/21-~.I]"l/2/T ~-I1/2 

i.e., a result having the structure of Eq. (2.117). Thus, the treatment of Sec- 
tion 2.4, based on generalized hyperscaling and believed to be valid for 
d<d*, and the present treatment based on a generalized mean-field 
approach which should hold for d >  d*, yield an identical scaling structure 
precisely for d =  d*. Of course, this is a necessary consistency check of the 
present theory. We also emphasize the fact that for such anisotropic 
systems, where vii r v• a finite system with all linear dimensions LH, L .  of 

822/55/1-2-8 
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the same order exhibits at T c a nonuniformly ordered state; in the present 
case of uniaxial Lifshitz points, the nonuniformity does occur in the z direc- 
tion (since vii < v• and the correlation function in the z direction decays 
exponentially with a correlation length ~o oc L~/~" for d<d* and with 

rmr(a-a*)/7 for d>d*. 
We now wish to consider a geometry which is elongated in one trans- 

verse direction (the "thin film" geometry where all transverse directions 
becomes very large is outside of consideration here). Thus, the geometry is 
L'~ x L~-2xLli with L~>L• L~ being the linear dimension in the x 
direction. We choose Lll at most of the size as defined in Eq. (2.115): then 
the only relevant inhomogeneities occur in the x direction, while all other 
inhomogeneities can be integrated out perturbatively. Then the effective 
Hamiltonian becomes 

fo' [~(~-x~2 1 2 u~ ] (2"119) Heft{ ~lr]} =Ld-2L[[ L• dX _[_ ~ t ~y _[_ ~. 1114 

We immediately recognize that this problem is equivalent to Eq. (2.74), 
only z is relabeled as x, Lll is relabeled as L' , ,  and L~ ~ is replaced by 
LaS2Lll. Thus we conclude that Eqs. (2.81) and (2.82) are replaced by 

~0 ~- ttO 1/3( Ld 2LI1)1/3 (2.120) 

r177 L[[, t) ~' t--l/2"~ ((La• 2L[[)1/3"~ (2.121) 
t 7--~~ ) 

Equations (2.88) and (2.89) get replaced by 

( ( t d - r ~ l [ )  1/3"~ (2.122) kBTcZ(Tc)"~(Ld-2LII)2/3 2 \  L• ,] 

((L~2LII)l/3~ (2.123) (I~'I)T,~-(L2) 1/2(L~-2LII)1/6~\  ~ // 

It needs to be emphasized that this holds only if LII is small enough. The 
maximum possible choice for Lit is given by Eq. (2.115); then Eqs. (2.122) 
and (2.133) can be rewritten as 

~lid-- 3/2 i (d-- d*)/7 ~1/3\ 
[Td--3/21(d--d*)/7~2/3 I ~ •  ~• 1 .~  (2.124) 

L~ ) 

/ ( f d-- 3/2 f (d--d*)/711/3\ 
( l e l  }T~-(L2)1 /2(Ld-3 /2L(d-d*) /7 ) - l /6~ 'c t~ '~•  1 )  

(2.125) 
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It is interesting to note that in general (d> d*) L~_ does not simply scale 
with L• although the decay of the bulk correlation function is described 
by the same exponent v• = 1/2 in all transverse directions. Putting again 
d=  d * =  4.5, however, we do recover simple scaling laws, 

kBTcz(Tc)~_L• , d = d *  =4.5 (2.126) 

1 ' 2  - -  /L •  d* <;i el LW'/ Lj_, d= =4.5 (2.127) 

which are consistent with the analogous expressions for d~< d*, 

kBTcZ(r<) ~- L(V~2 (-~-, ~ (2.128) \c• 

(IIItl)r,~_LTnI"~9(Lv-+-,I~=Ls_nlSv~LS_"IS~'9'(~, ~ (2.129) 
\Lz )  \Lz]  

2,9. F in i te -S ize  Scal ing for  the  Dr iven Kawasak i  M o d e l  
in its F ie ld -Theore t ic  Vers ion 

This subsection relies on the basic assumption that the treatment of 
the previous sections, dealing with anisotropic phase transitions in thermal 
equilibrium, can be carried over to an anisotropic nonequilibrium phase 
transition as well. Thus, the results in this subsection are necessarily 
speculative. However, no other approach exists for the driven Kawasaki 
model and it is doubtful whether a renormalization group theory of finite- 
size effects is feasible. (44) 

We start by considering once more the geometry Lie x L a-2 • as 
just treated, with L~ >> Lx but Lll not too large to ensure that the only 
relevant inhomogeneities again occur in the x direction where the linear 
dimension is L~. The maximum choice for LiI, of course, is not known at 
this point, but will be derived below. 

Now the treatments of Leung and Cardy ~35) and Janssen and 
Schmittmann (34) are invoked to conclude that the driven Kawasaki model 
for d > 2  should behave mean-field-like, the exponents being given in 
Eq. (1.11). But then our implication is that Eqs. (2.119)-(2.123) must 
describe this model, too! 

It is instructive to consider the limiting situation at d = 2  where 
Eq. (1.11) would be compatible with the generalized hyperscaling relation 
(1.10). Of course, for d=  2, a single transverse direction L~ remains, and 
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hence, using Eqs. (2.122) and (2.123) for d =  2, L• cancels out. Relabeling 
t then L• as L• we get 

kB Tcg(Tc) ~- L~(3~(L~(3/L• (2.130) 

([~[)To ~ L ~l/2LII1/6~(L~I/3/L• (2.131) 

Again this is seen to be consistent with the scaling result (2.34) if we recall 
r/H =4/3,  vii = 3/2 for d =  2 in this model. 

Now we have to finally consider the geometry Ld-ILII with Li4 ~ ~ .  
In this case the construction of He~{ 7 j} is a rather delicate matter: on one 
hand, it should reproduce the result that for t < 0 the equation of state 
must have the simple Landau (34) form for all d >  2. This implies that the 
homogeneous part of the integrand of Heu must still be given simply by 
�89 t4, as in Eq. (2.112). On the other hand, the gradient 
energy in the z direction can no longer be �89 2, since that then 
invariably would imply vii = 1/2, and we rather must get vii = 1 + (5 - d)/6; 
see Eq. (2.11). This consideration shows that a simple Landau theory 
cannot work as an integrand of the functional as it was used in Eqs. (2.59), 
(2.74), (2.100) and (2.112); we must work with a generalized Landau 
theory (43) where the gradient term is singular. This difficulty reflects the 
fact (34'35) that the fixed point for d <  5 which yields vii is not the Gaussian 
fixed point but another nontrivial fixed point, explicitly calculated in 
refs. 34 and 35. In this respect, the situation clearly differs from the 
Lifshitz-point problems considered above. 

Thus, we make the speculative proposal to work with the effective 
functional 

d ~  2 1 u o He~{~t}=L a l f~"dzI~(-~z  ) + ~ t ~ 2 + ~ . ~  4] (2.132) 

where now an exponent ~ < 1 makes the derivative term singular, while at 
the Lifshitz point we had ~: = 2 and for ordinary critical points K = l. The 
value of ~c is specified below. 

Working once more with the trial function ~U(z)= ~o e x p ( - z / l )  con- 
sistent with an exponential falloff of correlations, which is always expected 
to occur with a geometry Lit ~ ~ ,  L• finite, we estimate the terms in 
Eq. (2.132)analogously to Eqs. (2.78), (2.101)as 

L d -  1 ~ 1 - 2 ~  L d - l t ~ _ 1 2 r  d - 1  4 , L• Uo ~Uo ~ (2.133) 

For T sufficiently above T c the first two terms dominate: putting them 
equal to each other and equal to unity yields 

L ~ - '  ~o2r ~ 2~ d - ,  2 (2.134) = L •  t ~ o r  1, ~ = t  - 1/(2~] 
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Requesting that 4 oc t -1-~/6 (~ = 5 -  d) thus yields 

1 
~c - (2.135) 

2(1 + e/6) 

Since ~o 2 = Lz(d-1)/t 4 and [Eq. (2.76)] kaTz '~  w2rd- I  --o~J_ 4 = t  -1, this 
result reproduces the desired critical behavior for t > 0. 

At t = 0 we now equate the first and the third terms to each other and 
to unity, 

L d lqj2~1-2x a O b  0 = L d -  lb/o ~F'g0440 = 1, 7tg= 4oZK/uo (2.136) 

and hence 

40 = Uo 1/(4K - 1)L (d-  1)/(4K 1) = Uo(1 + ~/6)/(1 - e/6)L( ~ -  t)[(1 + ~/6)/(1 - e/6)] 

oc L 3  L ~_ (d- z)[(d- 7)/(d+ l)] (2.137) 

Thus, the result analogous to Eq. (2.82) is 

_ {L~L2'a-z"u-7)/'d+I"~ (2.138) 4(L., T ) ~ t - [ l + ( 5 - d ) / 6 ] g \  t_[l+(5_d)/6 ] /] 

At d = 2 ,  we again find 4o Gc L 3, consistent with the findings of 
Eqs. (2.130) and (2.131). For d =  3, 4, and 5, the respective results would 
be, however, 4o oc L 4, L~ 1/5, and L 4. 

Using 40 in Eq. (2.136) to estimate ~Uo2 as 

~[/2 0C L ~  (d 1)/2U01/240l/2 0C L ~  (d 1)[l+(l+e/6)/(1--e/6)]/2 (2.139) 

we obtain x(T~) from an expression analogous to Eq. (2.76), 

kB T~z(T~) oc L ~ -  1)E1 + (~ + e/6)/(1 ~/6)]/2 

.= L~+2)/2L~(d 2)(d- 7)/2(d+ 1) LII --* oo (2.140) 

and similarly, using Eq. (2.77), 

(J ~[J[ )To OC L~(d-4)/4LIII/2L&(d-2)(d-7)/4(d+I) , LII--* oo (2.141) 

Since Lll scales with 4o as written in Eq. (2.137), we may further conclude 
that 

L 3 
kB T~z(T~) ~- L~+2)/2LZ (d 2)(d--7)/2(d+ 1)~ \ ~ l l  ( j" L~(d  2)(d--7)/(d+ 1)) 

(2.142) 

( J ~tl )Tc ~" LII I/2 Lj_(d-4)/4L Z (d- 2)(d- 7)/2(d+ 1 ) ~  _~__L 2(d-- 2)(d 7)/(d+ 1) 

(2.143) 
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At d = 2  we recover the result k~3Tc.z(Tc)~-L~z(L~/Lll) compatible with 
Eq. (2.130), and 

(I 9"15To ~- LI71/2L~2~(L~/Lil) = L[[1/s~t '(L[/LII)  

consistent with Eq. (2.131). 
Again we wish to consider the crossover from the strip geometry to the 

fully homogeneous situation, as discussed in Section 2.5. This crossover 
should occur for 4o ~ Lii, i.e., 

L H oc L 3 L ~  (d-2)(d 7)/(d+1) (2.144) 

Using Eq. (2.65) for ;((To) and Lil as given by Eq. (2.144) yields 

k13T~z(T~) oc L(d• (2.145) 

which agrees with Eq. (2.140), and using Eq. (2.64) for ([~u[ 5T~ together 
with Eq. (2.144) yields 

([~_t[ )T~ 07. L ] (d- I)/4L ]3 /4L~ 2)(d- 7)/a(d+ 13 (2.146) 

which is the same result as Eq. (2.141) combined with Eq. (2.144). Of 
course, the smoothness of all these crossovers at arbitrary d in the range 
2 ~< d ~< 5 is a necessary, but not sufficient, condition for the correctness of 
the present theory. 

3. MONTE CARLO STUDY OF SHAPE EFFECTS ON FINITE- 
SIZE SCALING: RECTANGULAR LqixL. SUBSYSTEMS 
IN THE TWO-DIMENSIONAL ISING MODEL 

In this section we describe some Monte Carlo simulations which test 
some of the concepts developed in Section 2.2: this is the simplest case, 
where the correlation function decay is still governed by the same length in 
the two lattice directions (x, y), and thus it is only a-system shape effect 
that is under study. 

This finite-size scaling analysis of subsystems of a very large square 
having sides Lmax • Lmax and periodic boundary conditions, and the sub- 
systems having the geometry of Lit x L• with both LID ~ L m a  x and 
L• ~ L . . . .  is attractive for a variety of reasons: a single simulation run of 
the one large system is sufficient to yield the complete finite-size informa- 
tion; in addition, there is evidence that, at least for Lll = L• the corrections 
to finite-size scaling seem to be rather small/5) If instead we would consider 
fully finite LllxL• blocks with periodic boundary conditions, each 
geometry (Lll, L• requires a separate simulation run. 
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On the other hand, the finite-size scaling analysis of subsystems also 
has distinct disadvantages, from the computational point of view: if we 
were to perform a Monte Carlo simulation applying standard single spin- 
flip algorithms, (4s) the extension (46) of finite-size scaling to dynamic critical 
phenomena (47) implies that the relaxation time ~ at Tc scales with the linear 
dimensions Lfl, L• and L m a  x a s  follows: 

z oc Lma x (subsystem geometry) (3.1) 

oc (LltL• z/2 "~(Ltl/L• (finite block geometry) (3.2) 

where z is the dynamic critical exponent of the kinetic [sing model without 
conservation law (4v) (z ~ 2.13(48)). The scaling function ~(() is a constant 
when the argument is of order unity and ~(~ ~ o c ) = ~ ( 1 / ( - ~ 0 ) o c  ~-~/2. 
Since we must have L m a  x > LI]  , L• > 1, it is clear that a meaningful finite- 
size study of subsystem shape effects requires an extreme computational 

~- ?- symbol LII 
a 
~ =  V 256 

~ o 128 
- -  ~ '~ x 64 

+ 32 
~. A 16 
9 o 8 

4 

'"~,'Lj_ = L,.~=, 

L j_ ~ L=.=/2 

- 6 . 0  - 4 . 0  - 2 . 0  0 . 0  2 . 0  4 . 0  G.O 

log2(L• 

Fig. 1. Plot of log2(L~/V<l ~1 >) versus log2(L• where ~ is the magnetizat ion in a sub- 
system of size Lll • 1 7 7  of an Ising nearest-neighbor ferromagnetic square  lattice of size 
Lma x • Lma x with Lma X = 256. The data  refer to T =  T c. Curves are only drawn to guide the 
eye. Standard Ising exponents  (fl = 1/8, v = ! ) are used. 



118 Binder andWang 

effort, since the observation time must by far exceed the relaxation times in 
order to obtain meaningful results. 

Such a study is nevertheless feasible, however, applying the Monte 
Carlo algorithm, (49) where rather than flipping a single spin, in each step 
an arbitrarily large cluster of spins can be overturned: this algorithm 
reduces the "inefficiency" of the Monte Carlo method at Tc by strongly 
reducing the value of the exponent z, namely Z , ~ 0 . 3 5 .  (49) Thus we shall 
apply this algorithm in the following. 

First we describe results for Lmax = 256 (Figs. 1 and 2) for the two- 
dimensional Ising model right at T~ (J/k B T~ ~ 0.4407(5~ This size Lma x is 
large but not very large--it is about the maximum size that could be 
studied even with the single-spin flip algorithm with reasonable effort. Since 
it is not clear a priori how restrictively the conditions Lll ~ L . . . .  L• ,~ Lma x 
should be interpreted, we have ignored them in Figs. 1 and 2. The penalty 
for this procedure is drastic deviation from scaling: the data with Lll = Lmax 

o 

o 

o 

o 

o. 

g - -  

o 

o. 
,~- 

o. 
~.- 

o. 

-8.o -~'.o -4'.o -2'.0 0% Lo 4'.0 Lo 8. 
log~( L i /  LII) 

Fig. 2. Plot of l o g 2 ( L T ~ / v  ( g ~ 2 ) L I I L •  v e r s u s  log2(L• ) for the same calculation as shown 
in Fig. 1. Curves are only drawn to guide the eye. Standard Ising model exponents ( ?  = 7 / 4 ,  

v = 1 ~ are used. / 
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or Lz  = Lma x clearly are far off from the scaling function, and also the data 
with LII = Lmax/2 or L .  = Lm~x/2 fail to scale. The curves which satisfy both 
LII < Lmax/4 and L• < L m a x / 4  start converging against an envelope, which 
is the expected scaling function. On the other hand, since we want Lit >> 1, 
Lma x ~ 1, it certainly makes no sense to include data smaller than Lll = 4 or 
L• = 4 in such a plot: thus, only a few combinations of (Lll, L•  are close 
to the scaling limit if Lm~x = 256. Thus, with data as presented in Figs. 1 
and 2 a conclusive test of the scaling ideas presented in Section 2.2 cannot 
be performed. 

Thus, we have undertaken a somewhat larger computational effort, 
c h o o s i n g  Lma x = 1024, which took about 5 h CPU time at a CYBER 205 
supercomputer, 5 To our knowledge, this is the largest two-dimensional 

s Actually the limitation which prevented us in choosing Lma x still larger is not the CPU time 
but the storage requirement for the algorithm of ref. 49. 

c;- 

"7- 

V_1o.o -8'.o -6'.o -4'.o -Lo o'.o ~.o ~.o ~.o 8,o 1o.o 
log2(Ll/Lfl) 

Fig. 3. Logz-log 2 plot of L~/V~,l~l ) versus L• using subsystems Ltl • L• of a system of 
size Lmax • Lmax with Lma x = 1024. Subsystems included are all combinations (LI[, L• with 
linear dimensions 4, 8, 16, 32, 64, and 128. The smooth curve is an approximate calculation 
of the scaling function, as described in the text. 
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system that ever was equilibrated right at the critical point: availability of 
the novel algorithm of ref. 49 was absolutely crucial for this effort--even 
using the superfast vectorizing multispin algorithms currently available ~5~) 
for the simulation of Ising models would take about 100 times the effort for 
t h i s  L m a  x . 

Figures 3-5 show that with this large size we can get convincing 
verification of the shape-dependent finite-size scaling at T~ [Eqs. (2.7) and 
(2.13)]. Motivated by the experience demonstrated in Figs. 1 and 2, we 
have included only data with both Lll and L .  ~< Lmax/8 in these figures. If 
we include all sizes, deviations from scaling are again clearly visible and the 
scaling only appears as an envelope of parts of these curves, as 
demonstrated in Fig. 6 for the fourth-order cumulant g [Eq. (2.12)]. 

Since the correlation functions of the two-dimensional nearest 
neighbor Ising model are known exactly, ~4~ one can evaluate Eq. (2.4) to 
derive the scaling function 2 ( L H / L •  in Eq. (2.7) numerically. Instead 

o 
d -  

o 

~ o  
v 

7 -  

-io.o -o'.o -6'.o -4'.0 -Lo o.o Lo 4'.o 6'.o ~.o io.o 

log2( L • / LII ) 

Fig. 4. Log2-1og 2 plot of k B Tcz(Tc)LII ~/v = ( ~ Z ) L l l - # v  versus L dLII, using the same sub- 
systems as in Fig. 3. The curve is an approximate calculation of the scaling function, as 
described in the text. 
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working with the complete expansion derived in refs. 40 and 52, we have 
used the leading-order term only 

( T(0, 0) T(x, y ) )  rc ~ 0-645( x2 + y2) 1/8 (3.3) 

and neglected corrections which are of order (4~ ( x 2 + y  2) 5/8. The 
asymptotic form of the scaling function is )~(x)~: X 3/4 as X---> o0, and 
2(x) ~: x as x ~ 0. It is seen that the resulting approximate scaling function 
is in good agreement with the simulation data (Fig. 4). Using then 
Eqs. (2.9) and (2.10) to estimate T(LII/L.),,~ [~(LII/L• 1/2, the general 
trend of the actual scaling function ~" is also correctly predicted, although 
quantitative agreement no longer can be obtained, as expected. 

An interesting feature of the cumulant g(Ltl /L.  ) (Fig. 5) is the sym- 
metry of the curve around the line log2(LiJL• This symmetry just 
reflects the symmetry g(LII/L• = g(L• of course, since log(Lli/L• = 
-log(L• ). This symmetry property was not imposed in the actual 

r 

,5- 

o 
-6,0 -4'.0 -2',0 0'.o 2',0 4'.0 

log2(L• 

\ 

6.0 

Fig. 5. Plot of g versus togz(L• with L H = 128 (diamonds) ,  LII = 64 (crosses), LII = 32 
(pluses), Lll = 16 (triangles), Lil = 8 (circles), and Lii = 4 (squares).  Curves are only guides to 
the eye. All data  refer to the same calculation as shown in Figs. 3 and 4. 
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,3 

6 

c; 

d 

o / 

c; 

d 

-12.0 -d.0 -4'.o 0'.0 4'.0 8'.o 12.0 
log,(L• 

Fig. 6. Same as Fig. 5 but  inc lud ing  now all values  of L•  up  to L•  = L . . . .  as well as three 

add i t iona l  values  for Lil :  Lll = 256 ( s tand ing  t r iangles) ,  Ltl = 512 (square  wi th  crosses),  and  

L H = 1024 (aster isk) .  

direct calculation of g and thus is a sensitive test of the accuracy of the 
simulation data in Fig. 5 (note that statistical errors of g are larger than 
the errors of X and of ( l~el) ,  respectively). It is also clear that the 
maximum of g occurs for L t t=  L •  the correlations in the system 
are closest to those of a fully ordered state (for a perfectly aligned spin 
configuration g attains its maximal possible value g- -  1). 

We end this section with a caveat: including data which are in- 
appropriate (e.g., if Ltt and L• are not small in comparison with Lmax; see 
Figs. 1 and 2) leads to pronounced deviations from finite-size scaling. 
However, the present situation is rather clear-cut, since both Tc and the 
critical exponents are known exactly. (s~ In a case where both Tc and 
critical exponents are extracted from the finite-size scaling analysis itself, 
one might be easily mislead by results such as in Figs. 1 and 2 to choose 
Tc, fl, and v somewhat in error to obtain an apparently better "data 
collapsing" on the finite-size scaling plot. 



Finite-Size Effects at Critical Points 123 

4. C O N C L U S I O N S  

In this paper we have addressed the effect of anisotropy on finite-size 
scaling at critical points: both anisotropy of shape (e.g., rectangular 
systems with linear dimensions Lll and L• different in the two lattice direc- 
tions) and anisotropic critical behavior (correlation lengths 4It and (• 
diverging with different critical exponents vlf and v• in different directions) 
are considered. The special case where Ltl r  but correlations behave 
isotropically is treated also, since it can serve very well as a simple test case 
for some of the concepts developed in our work. 

Since one main motivation of this work is to provide a framework for 
the analysis of computer simulations of nonequilibrium phase transitions 
such as the driven Kawasaki model, for which field-theoretic treatments 
predict that for three dimensions the generalized hyperscaling relation does 
not hold, we have paid particular attention to finite-size effects without 
involving hyperscaling. For equilibrium phase transitions, this situation 
arises for uniaxial Lifshitz points above their marginal dimension d * =  4.5, 
and hence this is a problem of theoretical interest only; nevertheless, our 
tentative generalization of the treatment of Br6zin and Zinn-Justin to this 
anisotropic situation is a challenge which calls for a more rigorous treat- 
ment of finite-size effects for such anisotropic mean-field problems. 

A key idea of our treatment is to ask whether the finite system (which 
has d - 1  linear dimensions Lx and one linear dimension Ltr ) exhibits a 
uniform order or a nonuniformly ordered state when we cool it down 
through Tc. It is well known that for d = 2  and Ltl ~ ~ the ferromagnetic 
Ising system is nonuniformly ordered down to T ~ 0; one obtains a succes- 
sion of domains of opposite magnetization separated by domain walls 
[-which are at random positions, at an average distance 4H, consistent with 
a spin correlation function proportional to exp(-z/4tl) for spins separated 
a distance z along the strip]. In the critical region, the growth of correla- 
tions (in an Ising system the correlations above Tc grow uniformly accord- 
ing to the power law 4 ~: t-v, of course) is limited when 4 becomes of the 
order of the smaller length L_L, and thus 4~ is of order L• in the critical 
region (sufficiently below Tc, 4• varies exponentially with L• of course; 
this situation is outside of consideration here). The fact that 4• oc L~ at Tc 
is the basis for the well-known phenomenological renormalization techni- 
que for strips of finite width. 

While an isotropic system is uniformly ordered for Lll ----- L• this is not 
true for systems with anisotropically diverging correlations: if vii > v• the 
system will exhibit finite-size rounding if (for d < d * )  Lil~4ti oct -v~E, 
although then 4_ oz t vi is still much smaller than L l (=Lll). A transition 
to uniform order is then obtained for linear dimensions Lll and L• related 
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as Lil oc L~ ~/v• If Lit is much larger than L~/~, the growth of correlation 
is first limited in the transverse directions and the correlation function in 
the z direction (calling Lll ) will exhibit at Tc an exponential decay (with an 
effective correlation length proportional to L~/V~); on the other hand, if L H 
is much less than L~ ~/~, the growth of correlations is first limited in the z 
direction, and the correlation in the transverse directions will exhibit at Tc 
an exponential decay, but now with an effective correlation length L~/vH. 

Quantitatively similar conclusions hold also for d >  d*, where it is no 
longer the relation Lil oc L~ Iv• which controls the crossover from uniform 
to nonuniform order at To, however. Instead we predict for uniaxial 

rl/2r(d a*l/7 (with d * =  4.5) and for Lifshitz points a crossover at Lil oc ~• ~• 
the driven Kawasaki model at Lll oc L 3 L ~  (a-2)(d-7)/(a+l) 

While our scaling description for shape effects in the standard two- 
diensional Ising system is in full agreement with previous treatments based 
on conformal invariance and is easily confirmed by simulations (see Sec- 
tion 3), unfortunately no such Monte Carlo tests are available for the other 
scaling predictions made in the present work. Such Monte Carlo studies for 
anisotropic systems are not straightforward: in the case of Lifshitz points, 
it is already difficult to locate them in the parameter space of simple 
models, such as the ANNNI model. (53) Moreover, the regime d>d* is 
hard to study; one would have to consider 5-dimensional lattices. More 
work exists for the driven Kawasaki model, particularly for d =  2: but in 
contrast to our description, available preliminary data even might be 
compatible with vii =v•  In order to resolve this problem, much more 
extensive Monte Carlo work is necessary. This work will be presented and 
analyzed in a future publication. 

Finally, we mention that anisotropic scaling also occurs for wetting 
transitions, where an interface between coexisting bulk phases bound to a 
wall in a semi-infinite system in the "nonwet" phase unbinds at transition 
and is delocalized deep in the bulk in the "wet" phase (see ref. 54 for a 
general review). Size effects on such wetting transitions have been discussed 
by several authors (5s 59) and have also been seen in various Monte Carlo 
simulations, (58'6~ but are outside of consideration here. 
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NOTE ADDED IN PROOF 

After completion of our paper, we learned about the beautiful work of 
Bhattacharjee and Nagle, (61) who analyzed finite-size scaling for the exactly 
solved Kasteley model. (62) This model exhibits an exact example for 
anisotropic finite size scaling of the type considered here in Section 2.3. It 
has been shown (611 that the specific heat scales like 

C ~ L~/Vi@(tLll/~,, L~l/L~/V,~) 

where the exponents are known exactly (cr 1/2, vii= 1, v •  1/2), (61) 
satisfying the anisotropic hyperscaling relation vii + v• = 2 -  cr and also the 
scaling function C is known exactly. It has also been shown that for 
L• ~< 10, pronounced deviations from finite size scaling occur. (6]) 

This model is of great physical interest because it is isomorphic 
to domain-wall models of p x 1 commensurate-incommensurate phase 
transitions (63'641 in two dimensions. 
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